Câu hỏi của Phương Uyên - Toán lớp 7 | Học trực tuyến
Câu hỏi của Phương Uyên - Toán lớp 7 | Học trực tuyến
CMR:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
CMR : \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
A=\(\dfrac{1}{1.2^2}+\dfrac{1}{2.3^2}+\dfrac{1}{3.4^2}+...+\dfrac{1}{49.50^2}\)
B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
CM A<B
1. Chứng minh rằng:
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100}< 1\)
2. Chứng minh rằng:
\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\dfrac{99.100-1}{100!}< 2\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
CMR
\(\dfrac{7}{12}< A< \dfrac{5}{6}\)
Cho
Chứng minh rằng :\(\dfrac{1.98+2.97+3.96+...+96.3+97.2+98.1}{1.2+2.3+3.4+...+96.97+97.98+98.99}=\dfrac{1}{2}\)
tính tỉ số \(\dfrac{A}{B}\) biết A=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{101.102}\) và B=\(\dfrac{1}{52.102}\)+\(\dfrac{1}{53.101}\)+...+\(\dfrac{1}{102.52}\)+\(\dfrac{2}{77.154}\)
Tính \(P=\dfrac{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}{\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}}\)