\(3C=1+\dfrac{2}{3}+\dfrac{2}{3^2}+...+\dfrac{100}{3^{99}}\\ \Rightarrow2C=3C-C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\\ D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ 2D=3D-D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)=1-\dfrac{1}{3^{99}}< 1\\ \Rightarrow D< \dfrac{1}{2}\\ \Rightarrow2C< 1+\dfrac{1}{2}\\ \RightarrowĐPCM\)