Bài 1: Rút gọn biểu thức
a) \(A=\sqrt{26+15\sqrt{3}}\)
b) \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
c) \(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
d) \(D=\left(\sqrt{6}-2\right)\left(5+\sqrt{24}\right)\sqrt{5-\sqrt{24}}\)
e) \(E=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{3+\sqrt{5}}\right)\)
f) \(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
g) \(G=\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
h) \(H=\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\)
\(\sqrt{10}\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)}\)
Tính:
\(a)A=\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\\ b)\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
Rút gọn biểu thức:
a)\(\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
b)\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
c)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
d)\(\left(1+tan^2a\right)\left(1-sin^2a\right)+\left(1+cotan^2a\right)\left(1-cos^2a\right)\)
1)tính
a)\(\left(\dfrac{1}{5}\sqrt{500}-3\sqrt{45}+5\sqrt{20}\right):\sqrt{5}\)
b)\(\left(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}-\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\right).\sqrt{\dfrac{1}{48}}\)
c)\(\left(\dfrac{2\sqrt{3}+3}{\sqrt{3}+2}+\dfrac{2\sqrt{2}}{\sqrt{2}+1}\right):\left(\sqrt{12}+\sqrt{18}\right)\)
Tính :
a, \(B=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
b, \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c, \(C=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}-\frac{\sqrt{5-2\sqrt{6}}}{3}\)
Tính:
\(a)D=\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\left(-\sqrt{2}\right)\\ b)2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}\right)-\sqrt{75}\\ c)E=\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\\ d)P=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(e)M=-3\sqrt{50}+2\sqrt{98}-7\sqrt{72}\)
rút gọn biểu thức sau:
a.\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
b.\(A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\) với a\(\ge\)0; a\(\ne25\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)