Giải:
Ta có: \(\frac{a}{b}< \frac{c}{d}\) (1)
\(\Rightarrow ad< bc\)
+) \(ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (2)
+) \(ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (3)
Từ (1), (2) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)