Câu a :
\(VT=\) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3=VP\)
Câu b :
\(VT=\)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4=VP\)
Tương tự bạn khai triển là ra nhé
a) \(\left(x-1\right)\left(x^2+x+1\right)\)
=\(x^3+x^2+x-x^2-x-1=x^3-1\)
\(\RightarrowĐPCM\)
b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\)
c)(x+y+z)2 = [(x + y) + z]2 = (x + y)2 + 2(x + y)z + z2
= x2+ 2xy + y2 + 2xz + 2yz + z2
= x2 + y2 + z2 + 2xy + 2yz + 2xz
a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3\)
\(\Leftrightarrow x^3+x^2+x-x^2-x-1=x^3-1^3\)
\(\Leftrightarrow x^3-1=x^3-1^3\)
\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3\)
b) \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4=x^4-y^4\)
\(\Leftrightarrow x^4-y^4=x^4-y^4\)
\(\Rightarrow\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)