\(\sum\dfrac{1}{x}\cdot\sum\dfrac{x}{y^2}\ge\sum^2\dfrac{1}{x}\)(bunhia)
\(\sum\dfrac{1}{x}\cdot\sum\dfrac{x}{y^2}\ge\sum^2\dfrac{1}{x}\)(bunhia)
Cho x,y,z>0. CM: \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(z+x\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
cho x,y,z >0 thỏa mãn :xyz=1 . c/m : \(\dfrac{x^4y}{x^2+1}+\dfrac{y^4z}{y^2+1}+\dfrac{z^4x}{z^2+1}\ge\dfrac{3}{2}\)
Cho x,y,z >0 tm x+y+z=3
C/m :\(\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}\ge\dfrac{1}{9}+\dfrac{2}{27}\left(xy+yz+zx\right)\)
cho x,y,z dương thỏa \(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{2}{z}=0\)
tìm MIN T=\(\dfrac{x+z}{2x-z}+\dfrac{z+y}{2y-z}\)
Tìm GTNN của A=\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}biếtx,y,z>0,\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
cho x,y,z>0 thỏa mãn xyz=1. chứng minh rằng
\(\dfrac{1}{x^2+x+1}+\dfrac{1}{y^2+y+1}+\dfrac{1}{z^2+z+1}\ge1\)
Cho 3 số x y z thỏa mãn x+y+z=xyz.Cm:\(\dfrac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\dfrac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+z^2}-\sqrt{1+x^2}}{zx}+\dfrac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{yz}=0\)
Tìm GTNN của:
\(A=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z >0 và:
a, x+y+z=1
b,x2+y2+z2=1
Cho x,y,z là các số dương. Chứng minh rằng:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)