A=\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{4^{99}}\)
4A=1+\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{4^{98}}\)
4A-A=(1+\(\dfrac{1}{4}\)+..+\(\dfrac{1}{4^{98}}\))-(\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{4^{99}}\))
3A=1-\(\dfrac{1}{4^{99}}\)
A=
A=\(\dfrac{1-\dfrac{1}{4^{99}}}{3}\)