\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{12}..........\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2\)x
Tìm x, biết
\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{12}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}\)=\(4^x\)
1.Tính A= \(\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot\cdot\cdot\left(\dfrac{1}{2018}-1\right)\)
2. Tìm GTLN của B = \(-\left|2018\cdot x+1\right|+\dfrac{3}{13}\)
\(\left[\dfrac{3}{7}\cdot\dfrac{4}{15}+\dfrac{1}{3}\cdot\left(9^{15}\right)\right]^0\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{12^4}\). Tính
Cho C=\(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{199}{200}\) Chứng minh C2<\(\dfrac{1}{201}\)
Khuya rồi các bạn cố gắng giúp mk nhé !!! THANKS TRC
1. Cho \(B=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{99}{100}\) Chứng minh rằng : \(\dfrac{1}{15}< B< \dfrac{1}{10}\)
2.Tìm x,y,z biết : \(\dfrac{x}{6}=\dfrac{y}{-4}=\dfrac{z}{3}\) và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
3.Chứng minh rằng nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
4.Cho x,y,z,t là các số thực dương. Chứng minh rằng biểu thức sau không nhận giá trị nguyên :
\(M=\dfrac{x}{x+y+z}=\dfrac{y}{y+z+t}=\dfrac{z}{z+t+x}=\dfrac{t}{t+x+y}\)
5.Cho các số nguyên dương a,b,c,d,m,n,p thỏa mãn :\(a^2+b^2+c^2=m^2+n^2+p^2\) . Chứng minh rằng tổng \(a+b+c+m+n+p\) là hợp số
Tìm x, biết:
\(x=\dfrac{19}{11}\cdot\dfrac{5}{14}+\dfrac{1}{11}\cdot\dfrac{5}{7}-\sqrt{\dfrac{25}{4}}\cdot\dfrac{2}{11}\)
Tính
\(A=-\dfrac{11}{12}\cdot-\dfrac{4}{33}\cdot\dfrac{84}{-25}\cdot\dfrac{5}{8}\)
\(B=3\dfrac{2}{7}\cdot12\dfrac{2}{7}-3\dfrac{2}{7}\cdot5\dfrac{1}{2}\)
Thực hiện tính
M=\(1+\dfrac{1}{2}\cdot\left(1+2\right)+\dfrac{1}{3}\cdot\left(1+2+3\right)+\dfrac{1}{4}\cdot\left(1+2+3+4\right)+...+\dfrac{1}{16}\cdot\left(1+2+3+...+16\right)\)