Cho x,y,z là 3 số nguyên dương , nguyên tố cùng nhau và \(\left(x-z\right)\left(y-z\right)=z^2\) . Đặt a = xyz . Chứng minh rằng a là số chính phương
a) Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thoả mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện
M=a+b=c+d=e+f
Nếu câu b thiếu j thì các bạn cứ bỏ qua nha
Cho các số nguyên dương x, y, z thỏa mãn \(x^2+y^2=z^2\). Chứng minh rằng:
\(x+3z-y\) là hợp số.
1. Tìm các số nguyên tố x,y sao cho: 51x + 26y = 2000
2. Tìm số tự nhiên x, y biết: 7(x - 2004)^2 = 23 - y^2
3. Tìm x,y nguyên biết: 2xy - x -y=2
4. tìm x, biết |x+1,1| +|x+1,2|+|x+1,3|+|x+1,4|=5x
5, Tìm các số x,y,z biết: x/2=y/3=z/4 và x^2 + y^2 + z^2 = 116
6. Tìm các số x,y,z biết: 2x-3y/2=4y-2z/3=3z-4x/4 và 3x+2y+z=17
cho ba đơn thức : A=1/3 x^3 y^2 z ; B= -1/4 x^2 y z ; C= -1/5 x y z^2 với x,y,z là các biến số khác 0.
Cm trong ba đơn thức trên có ít nhất một đơn thức có giá trì dương
Cho 3 đại lượng x,y,z biết x tỉ lệ nghịch với y theo hệ số tỉ lệ là \(\frac{1}{2}\), y tỉ lệ thuận với z theo hệ số tỉ lệ là (-2). Khi đó hệ số tỉ lệ của x đối với z là.......
1, Tìm x; y; z \(\in N\) biết: xyz + xy +yz + zx + x + y + z = 2017
2, Cho x; y; z \(\in N\) thỏa mãn: \(\dfrac{x+y\sqrt{7}}{x+z\sqrt{7}}\) là một số hữu tỉ.
Tìm x; y; z để:
a) \(x^2+y^2+z^2\) là số nguyên tố
b) \(x^2-2y^2+z^2=143\)
Tìm x;y;z
A. x:y:z=2:3:4 và x +y+z=365
B. |x-(9/2)|+|y+(4/3)|+ |(7/2)+z|=0
C. [(1/2)×x-5]20+[y^2-(1/4)|=0
D.x^2+[y-(1/10]^4=0
Cho a,b,c,x,y,z là các số thực khác 0,thỏa:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).CMR:\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)}=\dfrac{1}{a^2+b^2+c^2}\)