Cho tam giác ABC vg tại A
AH vg góc với BC tại H
HE vg góc với AB tại E
HF vg góc với AC tại F
M trung điểm BC
P trung điểm BH
Q trung điểm MC
HN vg góc với EF tại N
CM :
1) BC^2=BE^2+CF^2+3AH^2
2) AH^3=BC.BE.CF=BC.HE.HF
3) BE^2=BH^3/BC
4) CF^2=CH^3/BC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)
1. Cho tam giác ABC vuông tại A có AH vuông góc với BC . Cạnh HE , HF là đường cao của tam giác AHB và tam giác AHC
a) Chứng minh BC2 = 3AH2 + BE2 + CF2
b) Cho BC = 2a cố định . Tìm GTNN của BE2 + CF2
c) Chứng minh BE2 =BH3 / BC
2. Cho tam giác ABC , có AH vuông góc với BC . Gọi E , F lần lượt là hình chiếu của H trên AB , AC . Biết AH = x , BC = 2a
a) Chứng minh AH3 = BC . BE . CF = BC . HE . HF
b) Tính diện tích tam giác AEF theo a và x . Tìm x để diện tích tam giác AEF đạt GTLN
Cho ΔABC vuông tại A, AH là đường cao. Kẻ HE vuông AB tại E, HF vuông AC tại F.
a)AE.AB=AF.AC
b)EF3=BC.BE.CF
c)\(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
d)BC2=3AH2+BE2+CF2
e)\(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
f)HB.HC=AE.EB+AF.FC
g)C/m: AM vuông EF (M là trung điểm BC)
Cho tam giác ABC vuông tại A đường cao AH . Gọi E F lần lượt là đường chiếu của h trên AB AC Chứng minh rằng:
a. BC² =3AH²+BE²+CF²
b. \(\dfrac{ }{ }\) AB³/AC³= BE/CF
c. AH³= BC.BE.CF
= BC.HE.HF
cho ΔABC: Â=90o, AH⊥BC, BH=4, HC=9.
A. TÍNH AH, AB, AC
b. Cho HE⊥AB, HF⊥AC. CM: AE.AB=AF.AC
c. BI⊥BC={B} , CẮT AC={K}. CM: BH.BC=AK.AC
d. CM: BE/CF = AB^3/AC^3
e. EF^3 = BE.CF.BC
f. AH^2/AC^2 = BH/BC
Cho tam giác ABC vuông tại A , đường cao AH. E, F lần lượt là hình chiếu của H lên AB và AC. CM:
a) BC2 = 3AH2 + BE2 + CF2
b) \(\frac{AB^2}{AC^2}\)= \(\frac{HB}{HC}\)
c) \(\frac{AB^3}{AC^3}\)=\(\frac{BE}{CF}\)
d) \(AH^3\)= BC . HE . HF
Cho tam giác ABC vuông tại A , đường cao AH. E, F lần lượt là hình chiếu của H lên AB và AC. CM:
a) BC2 = 3AH2 + BE2 + CF2
b) \(\frac{AB^2}{AC^2}\)= \(\frac{HB}{HC}\)
c) \(\frac{AB^3}{AC^3}\)=\(\frac{BE}{CF}\)
d) \(AH^3\)= BC . HE . HF
Cho tam giác ABC vg tại A , đường cao AH , E, F lần lượt là hình chiếu của H lên AB và AC .CM:
a) BC2 = 3AH2 + BF2 + CF2
b) \(\frac{AB^2}{AC^2}\)= \(\frac{HB}{HC}\)
C) \(\frac{AB^3}{AC^3}\) = \(\frac{BE}{CF}\)
d) AH3 = BC. HE .HF