Chương III : Phân số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dung Van

Chứng tỏ rằng:\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\)

Trình bày ra dùm mình nha!!Giúp em nha!!!
Mới vô
27 tháng 4 2017 lúc 20:37

\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\\ =\dfrac{200-2-\left(1+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{100}\right)}{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+...+\left(1-\dfrac{99}{100}\right)}\\ =\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}...+\dfrac{2}{100}\right)}{\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot99-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}=2\left(đpcm\right)\)


Các câu hỏi tương tự
lê nguyễn phương anh
Xem chi tiết
Tanya
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Ruby
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
anh ngoc
Xem chi tiết
Tran Khuong Nguyen
Xem chi tiết
Người Âm
Xem chi tiết
Nguyễn Vũ Hoàng
Xem chi tiết