\(N=2^{15}-2^{12}+2^4-2\)
\(N=2^{12}.\left(2^3-1\right)+16-2\)
\(N=2^{12}.7+14\)
Vì \(\left(2^{12}.7\right)⋮7\)
\(14⋮7\)
\(\Rightarrow N⋮7\)
Ta có:
\(N=\left(2^{15}-2^{12}\right)+\left(2^4-2\right)\)
\(N=\left(2^{12}.2^3-2^{12}\right)+\left(2.2^3-2\right)\)
\(N=2^{12}.\left(2^3-1\right)+2.\left(2^3-1\right)\)
\(N=\left(2^3-1\right).\left(2^{12}+2\right)\)
\(N=\left(8-1\right).\left(2^{12}+2\right)\)
\(N=7.\left(2^{12}+2\right)\) chia hết cho 7 \(\left(đpcm\right)\)
\(N=2^{15}-2^{12}+2^4-2\)
\(\Rightarrow N=\left(2^{15}-2^{12}\right)+\left(2^4-2\right)\)
\(\Rightarrow N=\left(2^{12}.2^3-2^{12}\right)+\left(2.2^3-2\right)\)
\(\Rightarrow N=2^{12}.\left(2^3-1\right)+2.\left(2^3-1\right)\)
\(\Rightarrow N=\left(2^3-1\right).\left(2^{12}+2\right)\)
\(\Rightarrow N=\left(8-1\right).\left(2^{12}+2\right)\)
\(\Rightarrow N=7.\left(2^{12}+2\right)\)
\(\Rightarrow N⋮7\)
\(\Rightarrowđpcm\)