\(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{\left(x+1\right)}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}=\dfrac{x+1-x}{x\left(x+1\right)}=\dfrac{1}{x\left(x+1\right)}\)(đpcm)
\(\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{x+1-1}{x\left(x+1\right)}=\dfrac{1}{x+1}\)
\(\Rightarrow\) Đpcm.
\(\dfrac{1}{x}-\dfrac{1}{x+1}\) MTC: \(x\left(x+1\right)\)
\(=\dfrac{x+1}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}\)
\(=\dfrac{x+1-x}{x\left(x+1\right)}\)
\(=\dfrac{1}{x\left(x+1\right)}\)
\(\Rightarrow dpcm\)