điều kiện xác định là : \(a>0;a\ne1\)
ta có : \(P=\left(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}\right)\dfrac{\left(\sqrt{a}-1\right)\left(a-1\right)}{\sqrt{a}}\)
\(P=\left(\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)
\(P=\left(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)
\(P=\left(\dfrac{a-\sqrt{a}+2\sqrt{a}-2-\left(a+\sqrt{a}-2\sqrt{a}-2\right)}{\sqrt{a}+1}\right)\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
\(P=\dfrac{a-\sqrt{a}+2\sqrt{a}-2-a-\sqrt{a}+2\sqrt{a}+2}{\sqrt{a}+1}.\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
\(P=\dfrac{2\sqrt{a}}{\sqrt{a}+1}.\dfrac{\sqrt{a}-1}{\sqrt{a}}=\dfrac{2}{\sqrt{a}+1}.\sqrt{a}-1=\dfrac{2\left(\sqrt{a}-1\right)}{\sqrt{a}+1}\)
\(P=\dfrac{2\sqrt{a}-2}{\sqrt{a}+1}\) (biểu thức này luôn phụ thuộc vào biến) (đpcm)