Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thạch Thị Ngô Tâm Như

chứng tỏ giá trị của biểu thức không phụ thuộc vào giá tị của biến P=\(\left(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}\right)\dfrac{\left(\sqrt{a}-1\right)\left(a-1\right)}{\sqrt{a}}\) với a>0 ,a khác 1

Mysterious Person
15 tháng 10 2017 lúc 8:52

điều kiện xác định là : \(a>0;a\ne1\)

ta có : \(P=\left(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}\right)\dfrac{\left(\sqrt{a}-1\right)\left(a-1\right)}{\sqrt{a}}\)

\(P=\left(\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(P=\left(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(P=\left(\dfrac{a-\sqrt{a}+2\sqrt{a}-2-\left(a+\sqrt{a}-2\sqrt{a}-2\right)}{\sqrt{a}+1}\right)\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

\(P=\dfrac{a-\sqrt{a}+2\sqrt{a}-2-a-\sqrt{a}+2\sqrt{a}+2}{\sqrt{a}+1}.\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

\(P=\dfrac{2\sqrt{a}}{\sqrt{a}+1}.\dfrac{\sqrt{a}-1}{\sqrt{a}}=\dfrac{2}{\sqrt{a}+1}.\sqrt{a}-1=\dfrac{2\left(\sqrt{a}-1\right)}{\sqrt{a}+1}\)

\(P=\dfrac{2\sqrt{a}-2}{\sqrt{a}+1}\) (biểu thức này luôn phụ thuộc vào biến) (đpcm)


Các câu hỏi tương tự
Ngọc Hà
Xem chi tiết
Triệu Tử Dương
Xem chi tiết
Phan PT
Xem chi tiết
Linh Ngoc Nguyen
Xem chi tiết
Khởi My
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết
Nguyễn cẩm Tú
Xem chi tiết
Đào Kim Ngân
Xem chi tiết
Thanh Vân
Xem chi tiết