Ta có:
\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-........-\dfrac{1}{2004^2}.\)
\(B=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+........+\dfrac{1}{2004^2}\right).\)
Đặt \(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+........+\dfrac{1}{2004^2}.\)
Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}.\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}.\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}.\)
..................
\(\dfrac{1}{2004^2}< \dfrac{1}{2003.2004}.\)
\(\Rightarrow M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+........+\dfrac{1}{2004^2}.\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+........+\dfrac{1}{2003.2004}.\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+........+\dfrac{1}{2003}-\dfrac{1}{2004}.\)
\(=\dfrac{1}{1}-\dfrac{1}{2004}.\)
\(=\dfrac{2003}{2004}.\)
\(\Rightarrow M< \dfrac{2003}{2004}.\)
\(\Rightarrow1-M>1-\dfrac{2003}{2004}.\)
\(\Rightarrow B>\dfrac{1}{2004}\) (do B = 1 - M).
\(\Rightarrowđpcm.\)
\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...........-\dfrac{1}{2004^2}\)
\(\Leftrightarrow B=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...........+\dfrac{1}{2004^2}\right)\)
Đặt :
\(H=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.........+\dfrac{1}{2004^2}\)
Ta có :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
.......................
\(\dfrac{1}{2004^2}< \dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+........+\dfrac{1}{2003.2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.......+\dfrac{1}{2003}-\dfrac{1}{2004}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2004}\)
\(\Leftrightarrow A< \dfrac{2003}{2004}\)
\(\Leftrightarrow1-A< 1-\dfrac{2003}{2004}\)
\(\Leftrightarrow B< \dfrac{1}{2004}\left(đpcm\right)\)