a, \(\sqrt{21}>\sqrt{20}\)
\(-\sqrt{5}>-\sqrt{6}\)
\(\Rightarrow\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b, \(\sqrt{2}< \sqrt{3}\)
\(\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)
a, \(\sqrt{21}>\sqrt{20}\)
\(-\sqrt{5}>-\sqrt{6}\)
\(\Rightarrow\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
b, \(\sqrt{2}< \sqrt{3}\)
\(\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\sqrt{2}+\sqrt{8}< \sqrt{3}+3\)
Chứng minh rằng:
a) \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)
b) \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>10\)
c) \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)
So sánh
a)\(\sqrt{21}+\sqrt{5}\) và \(\sqrt{20}-\sqrt{6}\)
b)\(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}\) và \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
Bài 1Trong các số sau đây số nào bằng \(\dfrac{3}{5}\)
a,\(\sqrt{\dfrac{3^2}{5^2}}\)
b,\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
c,\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}\)
Bài 2
a, \(x=\sqrt{3}+\sqrt{6}\)
\(y=2\sqrt{3}\)
b,\(x=\sqrt{3}+\sqrt{6}\)
\(y=\sqrt{2}+\sqrt{7}\)
c,\(x=-\dfrac{1}{2}\sqrt{\dfrac{1}{3}}\)
\(y=-\dfrac{1}{3}\sqrt{\dfrac{1}{2}}\)
Bài 3
\(a,\sqrt{x}-1=4\)
\(b,\sqrt{\left(x-1\right)^4}=16\)
Tính \(S=\dfrac{4+\sqrt{3}}{1+\sqrt{3}}+\dfrac{6+\sqrt{8}}{\sqrt{3}+\sqrt{5}}+...+\dfrac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
Rút gọn:
\(B=\dfrac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
\(C=\dfrac{\sqrt{9-6\sqrt{2}}-\sqrt{6}}{\sqrt{3}}\)
tìm x biết
\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(2\sqrt{3x}+11x-18=5x+2+6\cdot\sqrt{3x}+6x-21\)
Chứng tỏ
\(\sqrt{3}+\sqrt{8}+1< 6\)
a. \(\sqrt{\left(\sqrt{9-1}\right)^2}\)
b. \(\sqrt{x+3=5}\)
c. \(\sqrt{3x-2}-7=0\)
d. \(\sqrt{2x}=8\)
so sánh
\(\sqrt{21}-\sqrt{5}và\sqrt{20-\sqrt{6}}\)