Áp dụng bất đẳng thức Cauchy-Schwarz và bất đẳng thức AM-GM, ta có:
\(a^2+3\left(b^2+c^2+d^2\right)\ge a^2+\left(b+c+d\right)^2\ge2a\left(b+c+d\right)\)
Đẳng thức xảy ra khi $b=c=d=\frac{a}{3}.$
Cách biến đổi tương đương thì bạn đưa về dạng
\(\text{VT}-\text{VP}=\dfrac{1}{3} \left( a-3\,b \right) ^{2}+\dfrac{1}{3} \left( a-3\,d \right) ^{2}+\dfrac{1}{3} \left( a-3\,c \right) ^{2}\geqslant 0\)