Đặt \(A=\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)
=>A^3+A-2=0
=>A=1
Đặt \(A=\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)
=>A^3+A-2=0
=>A=1
Chứng minh đẳng thức :\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\)
Chứng minh:
\(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+.....+\dfrac{1}{\sqrt{97}+\sqrt{99}}>\dfrac{9}{4}\)
Cmr:
\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\)
Tính các tổng sau:
\(T=\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}+......+\dfrac{1}{\sqrt{2013}+\sqrt{2017}}}\)
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+.....+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
Cho 2 số thực x,y thỏa mãn: \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\)
Chứng minh rằng \(\dfrac{9+3\sqrt{21}}{2}< =x+y< =9+3\sqrt{15}\)
1) Chứng minh rằng: \(1+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt{3}}+...+\dfrac{1}{n\sqrt{n}}< 2\sqrt{2}\left(n\in N\right)\)
2) Chứng minh rằng: \(\dfrac{2}{3}+\sqrt{n+1}< 1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}< \dfrac{2}{3}\left(n+1\right)\sqrt{n}\)
3) \(2\sqrt{n}-3< \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}-2\)
4) \(\dfrac{\sqrt{2}-\sqrt{1}}{2+1}+\dfrac{\sqrt{3}-\sqrt{2}}{3+2}+...+\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)
1) Rút gọn biểu thức
P=\(\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Tìm x là số thực không âm để \(C=\dfrac{\left(9+2\sqrt{x}\right)}{2+3\sqrt{x}}\varepsilon Z\) là 1 số nguyên
CM: \(\left(\dfrac{2}{\sqrt{6}-1}+\dfrac{3}{\sqrt{6}-2}+\dfrac{3}{\sqrt{6}-3}\right).\dfrac{5}{9\sqrt{6}+4}=\dfrac{1}{2}\)