Cung và góc liên kết

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Chứng minh rằng với mọi \(\alpha\), ta luôn có :

a) \(\sin\left(\alpha+\dfrac{\pi}{2}\right)=\cos\alpha\)

b) \(\cos\left(\alpha+\dfrac{\pi}{2}\right)=-\sin\alpha\)

c) \(\tan\left(\alpha+\dfrac{\pi}{2}\right)=-\cot\alpha\)

d) \(\cot\left(\alpha+\dfrac{\pi}{2}\right)=-\tan\alpha\)

Bùi Thị Vân
11 tháng 5 2017 lúc 8:24

a)\(sin\left(\alpha+\dfrac{\pi}{2}\right)=cos\left[\dfrac{\pi}{2}-\left(\alpha+\dfrac{\pi}{2}\right)\right]=cos\left(-\alpha\right)=cos\alpha\).
b) \(cos\left(x+\dfrac{\pi}{2}\right)=sin\left[\dfrac{\pi}{2}-\left(x+\dfrac{\pi}{2}\right)\right]=sin\left(-x\right)=-sinx\).
c) \(tan\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{sin\left(\alpha+\dfrac{\pi}{2}\right)}{cos\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{cos\alpha}{-sin\alpha}=-cot\alpha\).
d) \(cot\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{cos\left(\alpha+\dfrac{\pi}{2}\right)}{sin\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{-sin\alpha}{cos\alpha}=-tan\alpha\).


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ll
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Ngọc Anh
Xem chi tiết