Câu 4: CMR: \(\sin x < x\) với \(x > 0\).
Câu 5: CMR: \(\cos x > 1 - \dfrac {x^2}{2}\) với \(x \neq 0\).
khi m≠+\(\sqrt{2}\) ≠-\(\sqrt{2}\) phương trình \(\dfrac{m\sin x-2}{m-2cosx}=\dfrac{m\cos x-2}{m-2\sin x}\) có bao nhiêu nghiệm thuộc đoạn \([20\pi;30\pi]\)
Cho phương trình :
\(\left(4-6m\right)sin^3x+3\left(2m-1\right)sinx+2\left(m-2\right)sin^2x.cosx-\left(4m-3\right)cosx=0\)
Tìm m để phương trình có nghiệm duy nhất \(x\in[0;\frac{\pi}{4}]\)
Không biết hoc24.vn còn những người đủ tâm và đủ tầm đề làm những bài như thế này không :(((
tính đạo hàm của các hàm số sau
a, y=\(-\dfrac{3x^4}{8}+\dfrac{2x^3}{5}-\dfrac{x^2}{2}+5x-2021\)
b, y= \(\sqrt{x^2+4x+5}\)
c, y=\(\sqrt[3]{3x-2}\)
d, y=(2x-1)\(\sqrt{x+2}\)
e, y=\(sin^3\left(\dfrac{\pi}{3}-5x\right)\)
g, y=\(cot^{^4}\left(\dfrac{\pi}{6}-3x\right)\)
Mọi người giúp tôi giải 2 hệ phương trình này với, khó quá làm mãi không ra, hu hu.
\(\begin{cases}2y^3+2x\sqrt{1-x}=\sqrt{1-x}-y\\2x^2+2xy\sqrt{1+x}=y+1\end{cases}\) Đáp án: (x; y)= (\(\cos\frac{3\pi}{10};\sqrt{2}\sin\frac{3\pi}{20}\)
\(\begin{cases}x^3-3x=\sqrt{y+3}\\x^3+2y^2+7\left(2x-y\right)=y^3+5\left(x^2+2\right)\end{cases}\) Đáp án: (x; y)= (2;1) ; (2cos 4pi/7 ; -1+2cos 4pi/7) ; (2cos 4pi/5 ; -1+2cos 4pi/5)
41, giai pt:
\(\frac{sin^22x+cos^42x+1}{\sqrt{sinx.cosx}}\)
1) Tìm m để hàm số y=\(\frac{mx-3}{x+m+4}\) nghịch biến trong khoảng xác định?
2)Xác định m để hàm số y=\(\frac{2x^2+\left(m+1\right)x+2m-1}{x+1}\) tăng trên mỗi khoảng xác định?
3) Tìm GTLN,GTNN của
a) y=\(\frac{cos2x}{cosx-sinx}\) trên [\(\frac{\pi}{3}\);\(\frac{\pi}{2}\)]
b) y=sin3x +cos3x trên [0;2π]
Đại ca, Đại tỉ nào giúp muội muội này với... Làm hoài ko ra ( câu b ạ)
Cho hàm số \(y=x^3+mx^2-1\).
a) Chứng minh rằng hàm số trên luôn có cực đại, cực tiểu với mọi m khác 0.
b) CMR đồ thị hàm số luôn cắt trục hoành tại điểm có hoành độ dương với mọi giá trị của m.
c)Tìm m để phương trình \(x^3+mx^2-1=0\) có ba nghiệm phân biệt.
xét tính chẵn lẻ của hàm số sau :
\(y=\frac{3tan^3x-5sinx}{2+cosx}\)
\(y=\frac{sinx}{x^4-3x^2+2}\)
Tìm GTLN GTNN của hàm số sau
y= sinx + cosx
\(y=\sqrt{2cosx+3}-4\)
\(y=sin^4x+cos^4x\)