chứng minh rằng phương trình m(x-1)3(x2-4)+x4-3=0 luôn có ít nhất 2 nghiệm phân biệt với mọi giá trị m
Với mọi giá trị của tham số m , chứng minh phương trình \(x^5+x^2-\left(m^2+2\right)x-1=0\) luôn có ít nhất 3 nghiệm thực.
a. Chứng minh rằng: Với mọi giá trị của tham số m phương trình \(\left(1-m^2\right)x^3-6x=1\) luôn có nghiệm
b. CMR với mọi GT của tham số m phương trình \(\left(m^2+m+5\right)\left(3-x\right)^{2021}.x+x-4=0\) luôn có nghiệm
Thầy bày em phương pháp giải dạng này được ko ạ . Em cảm ơn nhiều
Với mọi giá trị của tham số m , chứng minh phương trình \(x^5+x^2-\left(m^2+2\right)x-1=0\) luôn có ít nhất 1 nghiệm thực.
với mọi giá trị thực của tham số m, chứng minh phương trình x5+x2-(m2+2)x-1=0 luôn có ít nhất 3 nghiệm thực
Chứng minh phương trình sau luôn có nghiệm với mọi m :
\(\left(5-3m\right)x^7+m^2x^4-2=0\)
Chứng minh phương trình sau có ít nhất 2 nghiệm với mọi m
\(m\left(x-1\right)^{2022}\left(x^2-9\right)+x^2-2\)
chứng minh rằng phương trình (m2+m+4)x2017 -2x+1=0 luôn có ít nhất 1 nghiệm âm với mọi giá trị của tham số m
Cho Phương trình (m-1)(x-1)3(x-2)+2x-3=0 (m là tham số). Chứng minh phương trình luôn có nghiệm với mọi m.