Lời giải:
Đặt \(A=x^4-4x^3+5ax^2-4bx+c\)
Biến đổi:
\(A=x(x^3+3x^2-9x-3)-7(x^3+3x^2-9x-3)+30x^2+5ax^2-60x-4bx+c-21\)
\(\Leftrightarrow A=(x-7)(x^3+3x^2-9x-3)+x^2(30+5a)-x(60+4b)+c-21\)
Thấy rằng bậc của \(x^2(30+5a)-x(60+4b)+c-21\) nhỏ hơn bậc của \(x^3+3x^2-9x-3\)
Do đó khi chia $A$ cho \(x^3+3x^2-9x-3\) thì số dư là \(x^2(30+5a)-x(60+4b)+c-21\)
Để phép chia hết thì số dư là $0$, tức là:
\(x^2(30+5a)-x(60+4b)+c-21=0\forall x\)
\(\Rightarrow \left\{\begin{matrix} 30+5a=0\\ 60+4b=0\\ c-21=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-6\\ b=-15\\ c=21\end{matrix}\right.\)
\(\Rightarrow a+b+c=0\) (đpcm)