Lời giải:
a) Theo định lý Bê-du về phép chia đa thức, để \(f(x)=4x^2-6x+a\vdots x-3\) thì \(f(3)=0\)
\(\Leftrightarrow 4.3^2-6.3+a=0\)
\(\Leftrightarrow 18+a=0\Leftrightarrow a=-18\)
b) Ta thấy: \(x^2+4x+4=(x+2)^2\) nên trước tiên để đa thức đã cho chia hết cho $x^2+4x+4$ thì nó phải chia hết cho $x+2$
Theo định lý Bê-du, để đa thức chia hết cho $x+2$ thì:
\(f(-2)=(-2)^3+a(-2)^2-4=0\)
\(\Leftrightarrow -12+4a=0\Leftrightarrow a=3\)
Thử lại:
\(x^3+ax^2-4=x^3+3x^2-4=x^2(x-1)+4(x^2-1)\)
\(=(x-1)(x^2+4x+4)\vdots x^2+4x+4\) (thỏa mãn)
Vậy $a=3$