Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Mỹ

Chứng minh rằng

nếu ta có \(\frac{a}{b}=\frac{c}{d}\) thì \(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)

Nguyễn Huy Tú
18 tháng 1 2017 lúc 19:26

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có: \(\left(\frac{a-b}{c-d}\right)^4=\left(\frac{bk-b}{dk-d}\right)^4=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^4=\left(\frac{b}{d}\right)^4\) (1)

\(\frac{a^4+b^4}{c^4+d^4}=\frac{\left(bk\right)^4+b^4}{\left(dk\right)^4+d^4}=\frac{b^4.k^4+b^4}{d^4.k^4+d^4}=\frac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\frac{b^4}{d^4}=\left(\frac{b}{d}\right)^4\) (2)

Từ (1) và (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\left(đpcm\right)\)

Nguyễn Tấn Tài
18 tháng 1 2017 lúc 19:46

Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a-b}{c-d}\right)^4\) (1)

Ta lại có:

\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\) (2)

Từ (1);(2)\(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)


Các câu hỏi tương tự
namblue
Xem chi tiết
Lý Hoàng Kim Thủy
Xem chi tiết
dangthihuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Ngoc Diep
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
minh anh
Xem chi tiết
byun aegi park
Xem chi tiết
Nguyễn Xuân Huy
Xem chi tiết