Chứng minh rằng:a=\(x^3y\),b=\(x^2y^2\),c=\(xy^3\)thì với mọi x,y ta đều có:
a)ac+\(b^2\)-\(2x^4y^4\)=0
b)\(ay^2\)+\(cx^2\)=2xyb
c)abc+\(b^2\)\(\ge\)0
CMR nếu a=x^3×y,b=x^2×y^2,c=y^3×x thì bất kì số hữu tỷ x,y nào ta cũng có a×c+b^2-2.x^4×y^4=0
Tính tổng các đa thức sau:
a)A=x^2y-xy^2+3x^3
B=xy^2+x^2y-2x^3-1
b)P=2x^2-3xy+4y^2
Q=3x^2+4xy-y^2
R=x^2+2xy+3y^3
Tính P-Q+R
c)K=3x^2+2xy-2y^2
M=3y^2-2xy-x^2
Chứng tỏ K+M luôn nhận giá trị không âm với mọi x,y
Cho các số hữu tỉ \(x=\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\left(a,b,c,d\in Z;b>0;d>0\right)\)
Chứng minh rằng nếu x < y thì x < y < z .
B1 Tính giá trị của biểu thức sau
P= 3xy ( x+y ) + 2x^3y + 2x^2y^2 + 5, với x+y=0
Q= 3x^2 + 2xy - 2y^2 tại x=1 ; x= (-1)
B2 Tìm nghiệm của đa thức x^2 - x
B3 Tìm bậc của đa thức
M= x^5 + y^6 + x^4y^4 + 1
N= 4x^4 + 2x^3 - x^4 - x^2 + 2x^2 - 3x^4 - x +5
P= x^2 + y^3
B4 Để đa thức ax+6 có nghiệm là x= ( -3 phần 2) thì giá trị của a bằng bao nhiêu ?
B5 Cho đa thức Q= ax^2y^2 - 2xy + 3xy - 2x^2y^2 + 5. Biết rằng đa thức có bậc là 4 và a là số nguyên tố nhỏ hơn 5 . Tìm giá trị của a
1) Cho a, b, c là hằng số và a+b+c=2018.Tính giá trị của các biểu thức sau:
A=\(ax^3y^3+bx^3y+cxy^2\) tại x=1 ,y=1
B=\(ax^2y^2-bx^4y+cxy^6\) tại x=1, y=-1
2) Biết x+y-2=0. Tính giá trị của các biểu thức :
M=\(x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
N=\(x^3-2x^2-xy^2+2xy+2x-2\)
P=\(x^4+2x^3y-2x^3+x^2y^3-2x^2y-x\left(x+y\right)+2x+3\)
3) Có A=\(\dfrac{3a+2}{x-3}\) và B=\(\dfrac{x^2+3x-7}{x+3}\)
a) Tính A khi x=1,x=2,x=\(\dfrac{5}{2}\)
b) Tìm x \(\in\) Z để A số nguyên.
c) Tìm x \(\in\) Z để B số nguyên.
d) Tìm x \(\in\) Z để A và B cùng là số nguyên.
4) Cho C=\(\dfrac{2x-1}{x+2}\) và D=\(\dfrac{x^2-2x+1}{x+1}\)
a) Tìm x\(\in\)Z để C là số nguyên.
b) Tìm x\(\in\)Z để D là số nguyên.
c) Tìm x\(\in\)Z để C và D cùng là số nguyên.
Bài 1 : Cho các số thực a,b,c khác 0 thỏa mãn \(a+b+c=2;a^2+b^2+c^2=4\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Chứng minh rằng : xy+yz+zx=0
Bài 2 : Cho x khác -1;0;1 thỏa mãn \(\dfrac{a}{x-1}=\dfrac{b}{x}=\dfrac{c}{x+1}\) Chứng minh rằng : \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
Bài 3 : Cho các số thực a,b,c khác 0 thỏa mãn \(\dfrac{x}{a+2b-c}=\dfrac{y}{2a+b+c}=\dfrac{z}{4b+c-4a}\) . Chứng minh rằng : \(\dfrac{a}{x+2y-z}=\dfrac{b}{2x+b+c}=\dfrac{c}{4y+z-4x}\)
GIÚP MÌNH ĐI CHIỀU 1 GIỜ ĐI HOK RỒI !!!
1.cho đa thức A=-4x\(^5y^3+x^4y^2-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a.thu gọn rồi tìm bậc đa thức A
b.tìm đa thức B biết rằng B-2x\(^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
2.thu gọn các đơn thức sau rồi chỉ rõ hệ số phần biến và tìm bậc
a.A=x\(^3.\left(\frac{-5}{4}x^2y\right).\left(\frac{2}{5}x^3y^4\right)\)
b.B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}x^2y^5\right)\)
cho đa thức:
A= x^2 - 3xy - y^2 + 2x - 3y + 1
B = - 2x^2 + xy + 2y^3 - 3 - 5x + y
C = 7y^2 + 3x^2 - 4xy - 6x + 4y +5
tính A+B+C; A-B+C;A-B-C rồi xác định Bậc của đa thức đó