Vì \(:a>b\) nên \(2a>2b\)
\(\rightarrow2a-1>2b-1\)
\(\rightarrow2a-1+1>2b-1+1\)
\(\rightarrow2a-1+1>2b-1+1-1\)
\(\rightarrow2a>2b-1\)
\(\rightarrowĐPCM\)
Vì \(:a>b\) nên \(2a>2b\)
\(\rightarrow2a-1>2b-1\)
\(\rightarrow2a-1+1>2b-1+1\)
\(\rightarrow2a-1+1>2b-1+1-1\)
\(\rightarrow2a>2b-1\)
\(\rightarrowĐPCM\)
bài 1 : cho a, b, c>0 thỏa mãn a2+b2+c2=3
chứng minh rằng \(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}>=\dfrac{3}{2}\)
bài 2 : cho a, b, c>0. chứng minh rằng
\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}>=\dfrac{1}{2}\)
bài 3 : cho a, b, c>0 thỏa mãn ab+bc+ac=abc
tìm GTLN của \(S=\dfrac{1}{3a+2b+c}+\dfrac{1}{3b+2c+a}+\dfrac{1}{3c+2a+b}\)
1, Cho a,b,c > 0 ; a+b+c=4. Chứng minh: \(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{a+c+2b}\le1\)
2, Cho a,b>0 và a+b=1.Chứng minh : \(\frac{3}{ab}+\frac{2}{a^2+b^2}\ge16\)
3, Cho a,b,c >0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\).Chứng minh: \(\frac{1}{2a+b+c}+\frac{1}{a+c+2b}+\frac{1}{b+a+2c}\le1\)
(Bạn nào biết cách làm thì giúp mình nha, cảm ơn nhìu!)
Nếu a>b thì 2a-1 > 2b-1
Bài 1: Hãy so sánh a và b nếu:
a) 6 - 5a < 6 - 5b
b) -2a +3 > -2b+2 ( Cho a<b)
cho a,b,c > 0 có a+b+c\(\le\)3. Tìm Min
B=\(\dfrac{1}{\left(a+2b\right)\left(a+2c\right)}+\dfrac{1}{\left(b+2a\right)\left(b+2c\right)}+\dfrac{1}{\left(c+2a\right)\left(c+2b\right)}\)
Chứng minh rằng nếu: a + b =1 thì a2 + b2 ≥ \(\dfrac{1}{2}\)
so sánh a và b
a+5<b+5
2a+1<2b+1
-3a<-3b
-2a+3<-2b+3
làm hộ cái vì lần đầu mình học nên ko hiểu .............
chứng minh rằng Nếu a>b thì 3a - 5 > 3b - 5