Lời giải:
Vì $m,n$ là hai số nguyên tố cùng nhau nên theo định lý Euler ta có:
\(\left\{\begin{matrix} m^{\varphi(n)}\equiv 1\pmod n\\ n^{\varphi (m)}\equiv 0 \pmod n\end{matrix}\right.\)
\(\Rightarrow m^{\varphi (n)}+n^{\varphi (m)}\equiv 1\pmod n\) (1)
Tương tự:
\(\left\{\begin{matrix} m^{\varphi (n)}\equiv 0\pmod m\\ n^{ \varphi (m)}\equiv 1\pmod m\end{matrix}\right.\)
\(\Rightarrow m^{\varphi (n)}+n^{\varphi (m)}\equiv 1\pmod m\) (2)
Từ (1) và (2) ta có thể đặt \(m^{\varphi (n)}+n^{\varphi (m)}=mk+1=nt+1\)
(trong đó \(k,t\in\mathbb{N}\) )
\(\Rightarrow mk=nt\Rightarrow mk\vdots n\). Mà (m,n) nguyên tố cùng nhau nên \(k\vdots n\Rightarrow k=nu (u\in\mathbb{N})\)
Khi đó:
\(m^{\varphi (n)}+n^{\varphi (m)}=mnu+1\Leftrightarrow m^{\varphi (n)}+n^{\varphi (m)} \equiv 1\pmod {mn}\)
Ta có đpcm.