chứng minh rằng M= 1/2x3/4x5/6x...x99/100
chứng minh rằng
\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\) và B= 2
Chứng minh rằng:
a, M=1/2^2 + 1/3^2 + 1/4^2 +..+ 1/n^2 <1
Chứng minh rằng 1/20.23+1/23.26+1/2.29+...+1/77.80<1/9
Ai giúp mình tìm thêm một số cách giải, nhé?
Chứng minh rằng
\(\dfrac{1}{2020.2021}=\dfrac{1}{2020-2021}\)
Chứng minh rằng
\(\dfrac{5}{13.18}=\dfrac{1}{13}-\dfrac{1}{8}\)
a) Cho \(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{60}\)
Chứng minh \(\frac{3}{5}< S< \frac{4}{5}\)
b) Chứng minh \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+......+\frac{1}{100}>\frac{7}{10}\)
c) Chứng minh \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không là số tự nhiên d) Chứng minh \(\frac{1}{15}< D< \frac{1}{10}với\) \(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)Chứng minh rằng
\(\dfrac{1}{n.\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\left(nEN^{\cdot}\right)\)
Chứng minh rằng:
1/26 + 1/27 + 1/28 +..+ 1/50 = 1- 1/2 +1/3 - 1/4 +...+ 1/49 -1/50