Chứng tỏ:
1/26+1/27+...+1/49+1/50=99/50-97/49+...+7/4-5/3+3/2-1
cho tổng:
N = \(\frac{1}{21}\) + \(\frac{1}{22}\) + \(\frac{1}{23}\) + \(\frac{1}{24}\) + \(\frac{1}{25}\) + \(\frac{1}{26}\) + \(\frac{1}{27}\) + \(\frac{1}{28}\) + \(\frac{1}{29}\) + \(\frac{1}{30}\). chứng minh N > \(\frac{1}{3}\).
thật là rối rắm mọi người ạ!!!
Chứng minh rằng:
a, M=1/2^2 + 1/3^2 + 1/4^2 +..+ 1/n^2 <1
Cho S = 1/2^2 + 1/3^2 + 1/4^2 +...+ 1/9^2
chứng minh rằng 2/5 < S < 8/9
chứng minh rằng
\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\) và B= 2
Bài 6
b) Cho S = 1/50 + 1/51 + 1/52 + ... + 1/99
Chứng tỏ S > 5/6
c) Cho A = 1/10 + 1/11 + 1/12 + ... + 1/99 + 1/100
Chứng tỏ A > 1
Chứng minh rằng :
\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{200}>\dfrac{25}{12}\)
Cho A = 1/3 mũ 2 + 1/4 mũ 2 + 1/5 mũ 2 + ....... + 1/98 mũ 2 .
Chứng minh A < 1.
chứng tỏ rằng:
E=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)<\(\dfrac{3}{4}\)