a,Tìm x,y,z biết: \(\dfrac{y+z+1}{x}\)=\(\dfrac{x+z+2}{y}\)=\(\dfrac{x+y-3}{z}\)=\(\dfrac{1}{x+y+z}\)
b,Cho \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\). Chứng minh rằng: (\(\dfrac{a+b+c}{b+c+d}\))3=\(\dfrac{a}{d}\)
c,Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng: \(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)
d,Cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\).Chứng minh rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)
Cho 4 số a,b,c,d khác 0 thỏa mãn b2=ac và c2=bd
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}=\dfrac{a}{d}\)
Cần giúp nhanh vs
Bài 1. Tìm x
a) \(\left|x+\dfrac{7}{4}\right|=\dfrac{1}{2}\)
b) \(\left|2x+1\right|-\dfrac{2}{5}=\dfrac{1}{3}\)
c) \(3x.\left(x+\dfrac{2}{3}\right)=0\)
d) \(x+\dfrac{1}{3}=\dfrac{2}{5}-\left(-\dfrac{1}{3}\right)\)
Bài 2. Tính nhanh
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) Chứng minh \((\) \(\dfrac{a+b}{c+d}\)\()\)^3=\(\dfrac{a^3+b^3}{c^3+d^3}\)
Câu 1 : Cho a, b, c, d ϵ Z ; b là TB cộng của a và c
và \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{d}\right)\)
CMR a,b,c,d lập được thành 1 tỉ lệ thức
Câu 2 : Cho \(a_1\cdot a_3=a^2_2\) ; \(a_2\cdot a_4=a^2_3\)
CMR \(\dfrac{a_1^3+a^3_2+a_3^3}{a_2^3+a_3^3+a^3_4}=\dfrac{\left(a_1+a_2+a_3\right)^3}{\left(a_2+a_3+a_4\right)}=\dfrac{a_1}{a_4}\)
Câu 3 : Cho :
\(\dfrac{xn-ym}{p^2}=\dfrac{yp-zn}{m^2}=\dfrac{mz-xp}{n^2}\)
CMR x,y,z tỉ lệ với m,n,p
Bài 1:Tính bằng cách hợp lý (nếu có thể)
a,\(16\dfrac{2}{7}:\left(\dfrac{-3}{5}\right)+28\dfrac{2}{7}:\dfrac{3}{5}\)
b,\(\dfrac{3}{5}:\left(\dfrac{-1}{15}-\dfrac{1}{6}\right)+\dfrac{3}{5}:\left(\dfrac{-1}{3}-1\dfrac{1}{15}\right)\)
c,\(\left(-6,5\right).5,7+5,7.\left(-3.5\right)\)
d,\(10.\sqrt{0,01.}\sqrt{ }\dfrac{16}{9}+3\sqrt{49}-\dfrac{1}{6}\sqrt{4}\)
P = \(1+\dfrac{1}{2}\cdot\left(1+2\right)+\dfrac{1}{3}\cdot\left(1+2+3\right)+\dfrac{1}{4}\cdot\left(1+2+3+4\right)+...+\dfrac{1}{16}\cdot\left(1+2+3+...+16\right)\)
Cho a + b + c = 2016 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}.\) Tính S = \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Giải giúp mình nha.
Cho a,b,c là 3 số thực, thỏa mãn điều kiện:
a)\(\dfrac{a+b-c}{3\cdot c}=\dfrac{b+c-a}{3\cdot a}=\dfrac{c+a-b}{3\cdot b}\)
b)Tính giá trị biểu thức
\(P=\left(1+\dfrac{b}{a}\right)\cdot\left(1+\dfrac{a}{c}\right)\cdot\left(1+\dfrac{c}{b}\right)\)
Bài 1 : Tìm GTLN, GTNN :
a, A= x-|x|
b, B= \(\dfrac{1}{\left|x-2\right|+3}\)
c, C= \(\dfrac{x-2}{\left|x\right|}\)
d, D=|x+5|+2-x
Bài 2 : Tìm x thuộc Q, biết :
a,\(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2.15\right|\)
b,|x-1|=x-1
c,|x-1|+3x=1
d,2.|x|+3.|1-x|-5.|x-3|=0