Lời giải:
Lấy $x_1>x_2$ với \(x_1,x_2\in R\) \(\Rightarrow x_1-x_2>0\)
Khi đó:
\(f(x_1)=5x_1+3; f(x_2)=5x_2+3\)
\(\Rightarrow f(x_1)-f(x_2)=5(x_1-x_2)>0\)
Vậy với \(x_1>x_2\in R\Rightarrow f(x_1)>f(x_2)\). Suy ra hàm số trên đồng biến trên R
------------------------
\(f(x)=g(x)\)
\(\Leftrightarrow 3x^2-8x+4=3x+4\)
\(\Leftrightarrow 3x^2-11x=0\Leftrightarrow x(3x-11)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{11}{3}\end{matrix}\right.\)