A. \(x^2\left(x^2-2x+1\right)\)\(=x^2\left(x-1\right)^2\)\(=\left[x\left(x-1\right)\right]^2\ge0\forall x\) (đpcm)
B. \(x^2\left(x^2-6x+9\right)\)\(=x^2\left(x-3\right)^2\) \(=\left[x\left(x-3\right)\right]^2\ge0\forall x\)(đpcm)
A. \(x^2\left(x^2-2x+1\right)\)\(=x^2\left(x-1\right)^2\)\(=\left[x\left(x-1\right)\right]^2\ge0\forall x\) (đpcm)
B. \(x^2\left(x^2-6x+9\right)\)\(=x^2\left(x-3\right)^2\) \(=\left[x\left(x-3\right)\right]^2\ge0\forall x\)(đpcm)
Tìm giá trị của x để các biểu thức sau có nghĩa:
a)\(\sqrt{\dfrac{3x-1}{5}}\)
b)\(\sqrt{\dfrac{3}{15-2x}}\)
c) \(\sqrt{\dfrac{-2x}{x^2-3x+9}}\)
Cho biểu thức sau:
\(A=\left[\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của A khi \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) Tìm các giá trị nguyên của x để A có giá trị nguyên.
Cho biều thức P=\(\dfrac{x-2\sqrt{x}}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\dfrac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\)
a) Rút gọn biểu thức P
b) Tìm các giá trị x để P nhận giá trị nguyên
Cho biểu thức G=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{x^2-2x+1}{2}\)
Chứng minh rằng nếu 0<x<1 thì G nhận giá trị dương
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Cho biểu thức Y=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
a. Rút gọn biểu thức Y. Tìm giá trị nhỏ nhất của Y
b. cho x>1. Chứng minh rằng Y-|Y|=0
Cho biểu thức \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}};x\ge0,y\ge0,x\ne y\)
Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào x, y
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Giải các phương trình sau:
a) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}\)
b) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)