ta thấy:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{99^2}< \frac{1}{98.99}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< \frac{1}{1}-\frac{1}{99}< 1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< 1\left(đpcm\right)\)