Bài này áp dụng lý thuyết đồ thị parabol lớp 10 thì khá đơn giản, chỉ việc tính delta và chứng minh nó \(\le0\) là xong, lớp 9 cứ biến đổi tương đương, đỡ phải tìm BĐT đau đầu:
Dấu "=" có xảy ra tại \(x=y=0\) cho nên BPT đúng phải là:
\(x^2y^4+2y^2\left(x^2+2\right)+x^2+4xy\ge4xy^3\)
\(\Leftrightarrow\left(y^4+2y^2+1\right)x^2-4y\left(y^2-1\right)x+4y^2\ge0\)
\(\Leftrightarrow\left(y^2+1\right)^2x^2-4y\left(y^2-1\right)x+4y^2\ge0\)
\(\Leftrightarrow\left(y^2+1\right)^2\left[x^2-\frac{4y\left(y^2-1\right)}{\left(y^2+1\right)^2}x+\frac{4y^2\left(y^2-1\right)^2}{\left(y^2+1\right)^2}\right]+4y^2-\frac{4y^2\left(y^2-1\right)^2}{\left(y^2+1\right)^2}\ge0\)
\(\Leftrightarrow\left(y^2+1\right)^2\left[x-\frac{2y\left(y^2-1\right)}{y^2+1}\right]^2+\frac{16y^4}{\left(y^2+1\right)^2}\ge0\) (luôn đúng)