\(C=3\left(x^2+4x+4\right)+1=3\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)
`C=3x^2 + 12x+13`
`C=3x^2 + 12x + 12 + 1`
`C=3.(x^3 +4x+4)+2`
`C=3.(x+2)^2 +1`
Mà : \(\left(x+2\right)^2\ge0\forall x\)
`=> 3.(x+2)^2 +1`\(\ge0\forall x\)
Vậy `C=3x^2 + 12x+13` luôn dương với mọi `x` \(\left(đfcm\right)\)