Chứng minh rằng các biểu thức sau là những hằng số không phụ thuộc \(\alpha\) :
a) \(A=2\left(\sin^6\alpha+\cos^6\alpha\right)-3\left(\sin^4\alpha+\cos^4\alpha\right)\)
b) \(B=4\left(\sin^4\alpha+\cos^4\alpha\right)-\cos4\alpha\)
c) \(C=8\left(\cos^8\alpha-\sin^8\alpha\right)-\cos6\alpha-7\cos2\alpha\)
a) \(A=2\left(sin^6\alpha+cos^6\alpha\right)-3\left(sin^4\alpha+cos^4\alpha\right)\)
\(=2\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha\right)\)\(-3\left(sin^4\alpha+cos^4\alpha\right)\)
\(=2\left(sin^4\alpha+cos^4\alpha-sin^2\alpha cos^2\alpha\right)-3\left(sin^4\alpha+cos^4\alpha\right)\)
\(=-\left(sin^4\alpha+cos^4\alpha+2sin^2\alpha cos^2\alpha\right)\)
\(=-\left(sin^2\alpha+cos^2\alpha\right)^2=-1\) (Không phụ thuộc vào \(\alpha\)).
b) \(B=4\left(sin^4\alpha+cos^4\alpha\right)-cos4\alpha\)
\(=4\left(sin^4\alpha+cos^4\alpha+2sin^2\alpha cos^2\alpha\right)-8sin^2\alpha cos^2\alpha\)\(-\left(1-2sin^22\alpha\right)\)
\(=4.\left(sin^2\alpha+cos^2\alpha\right)^2-2sin^22\alpha-1+2sin^22\alpha\)
\(=4-1=3\).
c) \(8\left(cos^8\alpha-sin^8\alpha\right)-cos6\alpha-7cos2\alpha\)
\(=8\left(cos^4\alpha-sin^4\alpha\right)\left(sin^4\alpha+cos^4\alpha\right)-cos6\alpha-7cos2\alpha\)
\(=8\left(cos^2\alpha-sin^2\alpha\right)\left(sin^4\alpha+cos^4\alpha\right)-cos6\alpha-7cos2\alpha\)
\(=8cos2\alpha\left(sin^4\alpha+cos^4\alpha\right)-cos6\alpha-7cos2\alpha\)
\(=8cos2\alpha\left(sin^4\alpha+cos^4\alpha\right)-8cos2\alpha+cos2\alpha-cos6\alpha\)
\(=8cos2\alpha\left(sin^4\alpha+cos^4-1\right)+sin4\alpha sin2\alpha\)
\(=8cos2\alpha\left[\left(sin^4\alpha-sin^2\alpha\right)+\left(cos^4\alpha-cos^2\alpha\right)\right]+\)\(sin4\alpha sin2\alpha\)
\(=8cos2\alpha.\left[sin^2\alpha\left(sin^2\alpha-1\right)+cos^2\alpha\left(cos^2\alpha-1\right)\right]\)\(+sin4\alpha sin2\alpha\)
\(=8.cos2\alpha.\left(-2sin^2\alpha cos^2\alpha\right)+2sin2\alpha cos2\alpha sin2\alpha\)
\(=-2cos2\alpha.\left(sin2\alpha\right)^2+2cos2\alpha.\left(sin2\alpha\right)^2\)
\(=sin^22\alpha\left(-cos2\alpha+cos2\alpha\right)=sin^22\alpha.0=0\) (không phụ thuộc vào \(\alpha\)).