chứng minh rằng :
a) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\) b)\(\dfrac{1}{5^2}+\dfrac{1}{6^5}+...+\dfrac{1}{2013^2}+\dfrac{1}{2014}>\dfrac{1}{5}\)
Chứng minh rằng :
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2013^2}+\dfrac{1}{2014^2}>\dfrac{1}{5}\)
chứng minh :
a) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4}\) b) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2013^2}+\dfrac{1}{2014}>\dfrac{1}{5}\)
Thực hiện phép tính
a) A= \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)\)\(+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+...+2013\right)\)
b) B=\(\dfrac{1-3}{1.3}+\dfrac{2-4}{2.4}+\dfrac{3-5}{3.5}+\dfrac{4-6}{4.6}+...+\dfrac{2011-2013}{2011.2013}+\dfrac{2012-2014}{2012.2014}-\dfrac{2013+2014}{2013.2014}\)
a) \(\dfrac{2}{1^2}.\dfrac{6}{2^2}.\dfrac{12}{3^2}.\dfrac{20}{4^2}.\dfrac{30}{5^2}.....\dfrac{110}{10^2}.x=-20\)
b) \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right).x+2013=\dfrac{2014}{1}+\dfrac{2015}{2}+...+\dfrac{4025}{2012}+\dfrac{4026}{2013}\)
c) \(\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right).x=\dfrac{2012}{51}+\dfrac{2012}{52}+...+\dfrac{2012}{99}+\dfrac{2012}{100}\)
Cho tổng gồm 2014 số hạng: \(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2014}{4^{2014}}\). Chứng minh rằng \(S< \dfrac{1}{2}\)
Cho: \(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.....+\dfrac{1}{4026}\) và \(B=1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+....+\dfrac{1}{4025}\) . So sánh: \(\dfrac{A}{B}\) và \(1\dfrac{2013}{2014}\)
5\(\dfrac{8}{17}\): x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\): 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{1.4}\)+ \(\dfrac{1}{4.7}\)+ \(\dfrac{1}{7.10}\)+ ... + \(\dfrac{1}{x.\left(x+3\right)}\)= \(\dfrac{6}{19}\)
So sánh hai biểu thức A và B, biết rằng:
A = \(\dfrac{2012}{2013}\)+ \(\dfrac{2013}{2014}\) và B =\(\dfrac{2012+2013}{2013+2014}\).
chứng minh rằng :
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)