a,
\(x^2+4y^2-x+4y+2=\left(x^2-x+\dfrac{1}{4}\right)+4\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+4\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x,y\)
b,
\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0-3\left(-c\right)\left(-a\right)\left(-b\right)=0-3\left(-abc\right)=3abc\left(dpcm\right)\)