a: \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}=\sqrt{a}-\sqrt{b}\)
b: \(VT=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{2}\right)}{2-\left(\sqrt{3}-1\right)}\)
\(=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{3+\sqrt{3}}+\dfrac{\sqrt{2}\left(2-\sqrt{2}\right)}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)+2\left(\sqrt{2}-1\right)\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\dfrac{2\left(\sqrt{6}-\sqrt{2}+\sqrt{3}-1+\sqrt{6}+\sqrt{2}-\sqrt{3}-1\right)}{\sqrt{3}\cdot2}\)
\(=\dfrac{2\left(2\sqrt{6}-2\right)}{2\sqrt{3}}=\dfrac{2\sqrt{6}-2}{\sqrt{3}}\)