Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
cho x/5= y/8 =z/11
tính a, N= 6x-7y+4z/6x+7y-4z
b, M= 6x-7y+4z/6x+7y-4z
a) Chứng minh rằng nếu 2(x+y) = 5(y+z) = 3(z+x)
Thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho \(x^2=yz\) . Chứng minh rằng \(\dfrac{x^2+y^2}{y^2+z^2}=\dfrac{x}{z}\)
a) Cho a,b là các số nguyên và đa thức P(x) = x3 - a2x + 2013b. Chứng minh rằng P(x) chia hết cho 3 vs mọi giá trị nguyên của x khi và chỉ khi a không chia hêt scho 3
b) Tính tổng M = x + y + z, biết \(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{z+x}=\dfrac{7x}{y+z}+\dfrac{7y}{z+x}+\dfrac{7z}{x+y}=\dfrac{133}{10}\)
chứng minh rằng: 87 - 218 chia hết cho 14
Chứng minh rằng: Nếu \(\dfrac{x}{y}\)=\(\dfrac{z}{t}\) thì \(\left(\dfrac{x-y}{z-t}\right)^{1996}=\dfrac{x^{1996}+y^{1996}}{z^{1996}+x^{1996}}\) với các điều kiện các mẫu đều khác 0
Giúp mk vs ạ!
Cho 3 số x, y, z thỏa mãn x/2019=y/2020=z/2021. Chứng minh 4(x-y).(y-z)=(z-x)^2. Mọi người giúp mình với!
Cho 3 số a, b, c khác 0 và : a(y + z) = b(x + z) =c(z + y) Chứng minh rằng : y - z /a(b - c) = z - x / b(c - a) = x - y / c(a - b)
Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) với a,b,c,x,y,z \(\ne\)0. Chứng minh rằng : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)