\(8^7-2^{18}\\ =\left(2^3\right)^7-2^{18}\\ =2^{21}-2^{18}\\ =2^{17}\cdot\left(2^4-2\right)\\ =2^{17}\cdot14⋮14\)
Vậy \(8^7-2^{18}⋮14\)
\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.2^3-2^{18}.1\)
\(=2^{18}.8-2^{18}.1\)
\(=2^{18}\left(8-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.14⋮14\)
\(\rightarrowđpcm\)