Bài 7: Ôn tập cuối năm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lan Hương

Chứng minh phương trình: \(m\left(x-1\right)^3\left(x^2-4\right)+x^4-3=0\) có ít nhất 2 nghiệm với mọi m

Nguyễn Việt Lâm
26 tháng 3 2021 lúc 21:59

Xét hàm \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)

Hàm \(f\left(x\right)\) là hàm liên tục trên R

\(f\left(1\right)=-2< 0\)

\(f\left(-2\right)=13>0\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\)

\(f\left(2\right)=13>0\Rightarrow f\left(1\right).f\left(2\right)< 0\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\)

\(\Rightarrow\) Phương trình đã cho luôn có ít nhất 2 nghiệm với mọi m


Các câu hỏi tương tự
Phương lan
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Thị Ngọc Thơ
Xem chi tiết
Ll
Xem chi tiết
Hoàng Viết Chính
Xem chi tiết
Trần Mai Linh
Xem chi tiết
nguyen minh puong
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Lý Thành Phông
Xem chi tiết