\(y'=-\frac{1}{sin^2x}\)
\(\Rightarrow y+y'.sinx+tan\frac{x}{2}=cotx-\frac{sinx}{sin^2x}+tan\frac{x}{2}\)
\(=\frac{cosx}{sinx}-\frac{1}{sinx}+tan\frac{x}{2}=\frac{cosx-1}{sinx}+tan\frac{x}{2}\)
\(=\frac{1-2sin^2\frac{x}{2}-1}{2sin\frac{x}{2}cos\frac{x}{2}}+tan\frac{x}{2}=\frac{-sin\frac{x}{2}}{cos\frac{x}{2}}+tan\frac{x}{2}=-tan\frac{x}{2}+tan\frac{x}{2}=0\)