Chứng minh giá trị biểu thức C không phụ thuộc vào x, y:
C = \(\dfrac{1}{\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}-\dfrac{\sqrt{x+y}}{\sqrt{x}+\sqrt{y}}\right)^2}-\dfrac{x+y}{2\sqrt{x}\sqrt{y}}-\dfrac{\sqrt{\left(x+y\right)^4}}{4xy}\)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
1. Cho biểu thức Q=\(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
a) Tìm ĐK của x để Q có nghĩa.
b) Rút gọn biểu thức Q.
2. Tìm giá trị lớn nhất của biểu thức: M=\(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
3. CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
với x≠y, yz≠1, xz≠1, x≠0, y≠0, z≠0
thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x,y,z > 0. Chứng minh : \(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z}\)≥\(\frac{4\left(x+y+z\right)}{\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
Rút gọn biểu thức:
\(P=\frac{\frac{\left(x-y\right)^3}{\left(\sqrt{x}+\sqrt{y}\right)^3}+2x\sqrt{x}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\left(\sqrt{xy}-y\right)}{x-y}\) ( Với x>0, y>0; \(x\ne y\))
Cho biểu thức:
\(A=\left[\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right]:\left[\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-y}-\frac{x+y}{\sqrt{xy}}\right]\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A biết \(x=3;y=4+2\sqrt{3}\)
Tìm giá trị nhỏ nhất của biểu thức biết x,y,z là các số thực dương thay đổi có tổng bằng \(\sqrt{2}\):
\(\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}.\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=\(\sqrt{2}\).Tìm GTNN của biểu thức \(T=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
1, gpt
a,\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
c,\(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
2/ cho x,y,z thỏa mãn : \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
tính giá trị biểu thức B=\(\left(x^{29}+y^{29}\right)\left(x^{11}+y^{11}\right)\left(x^{2013}+y^{2013}\right)\)