Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Armldcanv0976

Chứng minh:

\(\frac{a+b}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3a\right)}}\)\(\ge\)\(\frac{1}{2}\) (a,b>0)

tthnew
26 tháng 7 2019 lúc 13:38

Ta có:

\(\frac{a+b}{\sqrt{a\left(a+3b\right)}+\sqrt{b\left(b+3a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3a\right)}}\) (nhân 2 vào cả tử và mẫu)

\(\ge\frac{2\left(a+b\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3a}{2}}=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}^{\left(đpcm\right)}\) (áp dụng BĐT Cô si vào cái mẫu)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}4a=a+3b\\4b=b+3a\end{matrix}\right.\Leftrightarrow a=b\)

Nguyễn Thành Trương
26 tháng 7 2019 lúc 15:46

Áp dụng BĐT Côsi ta có:

\( \sqrt {4a\left( {3a + b} \right)} \le \dfrac{{4a + 3a + b}}{2} = \dfrac{{7a + b}}{2}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} \le \dfrac{{7a + b}}{4}\\ \sqrt {4b\left( {3b + a} \right)} \le \dfrac{{4b + 3b + a}}{2} = \dfrac{{7b + a}}{2}\\ \Rightarrow \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a}}{4}\\ \Rightarrow \sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} \le \dfrac{{7b + a + 7a + b}}{4} = 2\left( {a + b} \right)\\ \Rightarrow \dfrac{{a + b}}{{\sqrt {a\left( {3a + b} \right)} + \sqrt {b\left( {3b + a} \right)} }} \ge \dfrac{1}{2} \)

Dấu "=" xảy ra\(\left\{{}\begin{matrix}4a=3a+b\\4b=3b+a\end{matrix}\right.\Leftrightarrow a=b\)


Các câu hỏi tương tự
Hồng Nguyễn Thị Bích
Xem chi tiết
Di Nại
Xem chi tiết
Thanh Tân
Xem chi tiết
poppy Trang
Xem chi tiết
hakito
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Đặng Dung
Xem chi tiết
Tdq_S.Coups
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết