Sửa đề: \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
Ta có: \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{2-2\cdot\sqrt{2}\cdot\sqrt{3}+3}-\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)
\(=\left|\sqrt{2}-\sqrt{3}\right|-\left|\sqrt{2}+\sqrt{3}\right|\)
\(=\sqrt{3}-\sqrt{2}-\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\sqrt{3}-\sqrt{2}-\sqrt{2}-\sqrt{3}\)
\(=-2\sqrt{2}\)(đpcm)