VT =\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
=\(\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
=\(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)
=> đpcm
VT =\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
=\(\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)
=\(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)
=> đpcm
Hãy viết biểu thức sau dưới dạng:
a)Tổng bình phương của hai biểu thức:
M=\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
b)Tổng bình phương của ba biểu thức:
N=\(\left(a+b+c\right)^2+a^2+b^2+c^2\)
P=\(2\left(a-b\right)\left(c-b\right)+2\left(b-a\right)\left(c-a\right)+2\left(b-c\right)\left(a-c\right)\)
Chứng minh các đẳng thức sau :
a) \(\left(a-b\right)^3=-\left(b-a\right)^3\)
b) \(\left(-a-b\right)^2=\left(a+b\right)^2\)
1)Rút gọn
a)\(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)
b)\(\left(a+b+c\right)^2+\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2-3\left(a^2+b^2+c^2\right)\)
chứng minh \(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)
thì x=y=z
b) \(\left(a+b+c+d\right)\left(a-b+c-d\right)=\left(a^2-b+c-d\right)\left(a+b-c-d\right)\)
thì ad=bc
Chứng minh không tồn tại x,y,z thỏa mãn
a) \(5x^2+10y^2-6xy-4x-2y+3\)=0
b) \(x^2+4y^2+z^2-2x-6x+6y+15=0\)
Chứng minh giá trị của các biểu thức không phụ thuộc vào giá trị của x:
a) A=\(3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
b) B=\(-x\left(x +2\right)^2+\left(2x+1\right)^2+\left(x+3\right)\left(x^2-3x+9\right)-1\)
Rút gọn biểu thức:
a/ \(\left(x^2-2x+2\right)\left(x-2\right)\left(x^2-2x+2\right)\left(x+2\right)\)
b/ \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
c/ \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
d/ \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+2\left(a+b\right)^2\)
- Cho thêm 1 VD về dạng: rút gọn biểu thức(y như trên) rồi trình bày chi tiết:
* Lưu ý: Không được trùng với 4 bài trên
Rút gọn các biểu thức sau :
a) \(\left(a+b\right)^2-\left(a-b\right)^2\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
c) \(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
Cho a+b+c=0. Chứng minh rằng: \(2.\left(a^5+b^5+c^5\right)=5abc.\left(a^2+b^2+c^2\right)\)
rút gọn biểu thức
a/ 2x\(\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
b/ \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
c/ \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
d/ ( 3 + 1 ) \(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)