mk làm câu 1) CMR: x5 + y5 \(\ge\) x4y + xy4 với x,y \(\ne\) 0 và x + y \(\ge\) 0.
Giải
Ta có: \(x^5+y^5\ge x^4y+xy^4\) (**)
\(\Leftrightarrow\left(x^5-x^4y\right)-\left(xy^4-y^5\right)\ge0\)
\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\left(x^2+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (*)
Ta thấy: \(\left(x-y\right)^2\ge0\), x + y \(\ge\) 0(gt), x2 + y2 \(\ge\) 0,do đó BĐT(*) luôn đúng.
Vậy BĐT(**) được chứng minh, dấu "=" xảy ra khi x = y.