a) \(x^4-x^2+3=\left[\left(x^2\right)^2-2\cdot x^2\cdot\frac{1}{2}+\frac{1}{4}\right]+\frac{11}{4}=\left(x^2-\frac{1}{2}\right)^2+\frac{11}{4}>0\)
=>đpcm
b) \(x^2-x+1=\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=>đpcm
c) \(x^2+x+2=\left(x^2+2\cdot x+\frac{1}{2}+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=>đpcm
d) \(\left(x+3\right)\left(x-11\right)+20\)
\(=x^2-11x+3x-33+20\)
\(=x^2-8x-13\)
\(=\left(x^2-8x+16\right)-29=\left(x+4\right)^2-29\)
Xem lại đề