Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Chứng minh:

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)

\(B=\dfrac{36}{1.3.5}+\dfrac{36}{5.7.9}+\dfrac{36}{9.11.13}+...+\dfrac{36}{25.27.29}< 3\)

\(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\in< 1\left(n\in N,n\ge2\right)\)

\(D=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< 4\left(n\in N,n\ge2\right)\)

\(E=\dfrac{2!}{3!}+\dfrac{2!}{4!}+\dfrac{2!}{5!}+...+\dfrac{2!}{n!}< 1\left(n\in N,n\ge3\right)\)

Ngô Tấn Đạt
26 tháng 9 2017 lúc 21:43

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)

Cái B TT nhé

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)

D TT

E mk thấy nó ss ớ

ChaosKiz
26 tháng 9 2017 lúc 21:22

ai thế


Các câu hỏi tương tự
Đỗ Diệu Linh
Xem chi tiết
nguyễn
Xem chi tiết
Sky MT-P
Xem chi tiết
Nguyễn Thị Khánh Huyền
Xem chi tiết
Ruby
Xem chi tiết
Bùi Lê Trâm Anh
Xem chi tiết
Nguyễn Hoàng Long
Xem chi tiết
Phạm Thu Huyền
Xem chi tiết